## Jupyter Snippet NP ch15-code-listing

Jupyter Snippet NP ch15-code-listing

# Chapter 15: Machine learning

Robert Johansson

Source code listings for Numerical Python - Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib (ISBN 978-1-484242-45-2).

from sklearn import datasets
from sklearn import model_selection
from sklearn import linear_model
from sklearn import metrics
from sklearn import tree
from sklearn import neighbors
from sklearn import svm
from sklearn import ensemble
from sklearn import cluster

%matplotlib inline
import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns


# Built in datasets

datasets.load_boston

<function sklearn.datasets.base.load_boston(return_X_y=False)>

datasets.fetch_california_housing

<function sklearn.datasets.california_housing.fetch_california_housing(data_home=None, download_if_missing=True, return_X_y=False)>

datasets.make_regression

<function sklearn.datasets.samples_generator.make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)>


# Regression

np.random.seed(123)

X_all, y_all = datasets.make_regression(n_samples=50, n_features=50, n_informative=10) #, noise=2.5)

X_train, X_test, y_train, y_test = model_selection.train_test_split(X_all, y_all, train_size=0.5)

/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)

X_train.shape, y_train.shape

((25, 50), (25,))

X_test.shape, y_test.shape

((25, 50), (25,))

model = linear_model.LinearRegression()

model.fit(X_train, y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
normalize=False)

def sse(resid):
return sum(resid**2)

resid_train = y_train - model.predict(X_train)
sse_train = sse(resid_train)
sse_train

1.469187171658096e-24

resid_test = y_test - model.predict(X_test)
sse_test = sse(resid_train)
sse_test

1.469187171658096e-24

model.score(X_train, y_train)

1.0

model.score(X_test, y_test)

0.31407400675201735

def plot_residuals_and_coeff(resid_train, resid_test, coeff):
fig, axes = plt.subplots(1, 3, figsize=(12, 3))
axes[0].bar(np.arange(len(resid_train)), resid_train)
axes[0].set_xlabel("sample number")
axes[0].set_ylabel("residual")
axes[0].set_title("training data")
axes[1].bar(np.arange(len(resid_test)), resid_test)
axes[1].set_xlabel("sample number")
axes[1].set_ylabel("residual")
axes[1].set_title("testing data")
axes[2].bar(np.arange(len(coeff)), coeff)
axes[2].set_xlabel("coefficient number")
axes[2].set_ylabel("coefficient")
fig.tight_layout()
return fig, axes

fig, ax = plot_residuals_and_coeff(resid_train, resid_test, model.coef_)
fig.savefig("ch15-regression-ols.pdf")


model = linear_model.Ridge() #alpha=2.5)

model.fit(X_train, y_train)

Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, random_state=None, solver='auto', tol=0.001)

resid_train = y_train - model.predict(X_train)
sse_train = sum(resid_train**2)
sse_train

178.50695164950986

resid_test = y_test - model.predict(X_test)
sse_test = sum(resid_test**2)
sse_test

212737.00160105852

model.score(X_train, y_train), model.score(X_test, y_test)

(0.9994595515017335, 0.31670332736075457)

fig, ax = plot_residuals_and_coeff(resid_train, resid_test, model.coef_)
fig.savefig("ch15-regression-ridge.pdf")


model = linear_model.Lasso(alpha=1.0)

model.fit(X_train, y_train)

Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)

resid_train = y_train - model.predict(X_train)
sse_train = sse(resid_train)
sse_train

309.7497138953223

resid_test = y_test - model.predict(X_test)
sse_test = sse(resid_test)
sse_test

1489.1176065002487

fig, ax = plot_residuals_and_coeff(resid_train, resid_test, model.coef_)
fig.savefig("ch15-regression-lasso.pdf")


alphas = np.logspace(-4, 2, 100)

coeffs = np.zeros((len(alphas), X_train.shape[1]))
sse_train = np.zeros_like(alphas)
sse_test = np.zeros_like(alphas)

for n, alpha in enumerate(alphas):
model = linear_model.Lasso(alpha=alpha)
model.fit(X_train, y_train)
coeffs[n, :] = model.coef_
resid = y_train - model.predict(X_train)
sse_train[n] = sum(resid**2)
resid = y_test - model.predict(X_test)
sse_test[n] = sum(resid**2)

/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.
ConvergenceWarning)

fig, axes = plt.subplots(1, 2, figsize=(12, 4), sharex=True)

for n in range(coeffs.shape[1]):
axes[0].plot(np.log10(alphas), coeffs[:, n], color='k', lw=0.5)

axes[1].semilogy(np.log10(alphas), sse_train, label="train")
axes[1].semilogy(np.log10(alphas), sse_test, label="test")
axes[1].legend(loc=0)

axes[0].set_xlabel(r"${\log_{10}}\alpha$", fontsize=18)
axes[0].set_ylabel(r"coefficients", fontsize=18)
axes[1].set_xlabel(r"${\log_{10}}\alpha$", fontsize=18)
axes[1].set_ylabel(r"sse", fontsize=18)
fig.tight_layout()
fig.savefig("ch15-regression-lasso-vs-alpha.pdf")


model = linear_model.LassoCV()

model.fit(X_all, y_all)

/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2053: FutureWarning: You should specify a value for 'cv' instead of relying on the default value. The default value will change from 3 to 5 in version 0.22.
warnings.warn(CV_WARNING, FutureWarning)

LassoCV(alphas=None, copy_X=True, cv='warn', eps=0.001, fit_intercept=True,
max_iter=1000, n_alphas=100, n_jobs=None, normalize=False,
positive=False, precompute='auto', random_state=None,
selection='cyclic', tol=0.0001, verbose=False)

model.alpha_

0.06559238747534718

resid_train = y_train - model.predict(X_train)
sse_train = sse(resid_train)
sse_train

1.5450589323146204

resid_test = y_test - model.predict(X_test)
sse_test = sse(resid_test)
sse_test

1.5321417406216717

model.score(X_train, y_train), model.score(X_test, y_test)

(0.9999953221722068, 0.9999950788657098)

fig, ax = plot_residuals_and_coeff(resid_train, resid_test, model.coef_)
fig.savefig("ch15-regression-lasso-cv.pdf")


model = linear_model.ElasticNetCV()

model.fit(X_all, y_all)

/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2053: FutureWarning: You should specify a value for 'cv' instead of relying on the default value. The default value will change from 3 to 5 in version 0.22.
warnings.warn(CV_WARNING, FutureWarning)

ElasticNetCV(alphas=None, copy_X=True, cv='warn', eps=0.001,
fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100,
n_jobs=None, normalize=False, positive=False, precompute='auto',
random_state=None, selection='cyclic', tol=0.0001, verbose=0)

model.alpha_

0.13118477495069433

model.l1_ratio

0.5

resid_train = y_train - model.predict(X_train)
sse_train = sum(resid_train**2)
sse_train

2183.8391729391196

resid_test = y_test - model.predict(X_test)
sse_test = sum(resid_test**2)
sse_test

2650.050446338252

model.score(X_train, y_train), model.score(X_test, y_test)

(0.9933881981034111, 0.9914882195448783)

fig, ax = plot_residuals_and_coeff(resid_train, resid_test, model.coef_)
fig.savefig("ch15-regression-elastic-net-cv.pdf")


# Classification

iris = datasets.load_iris()

type(iris)

sklearn.utils.Bunch

iris.target_names

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

iris.feature_names

['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']

iris.data.shape

(150, 4)

iris.target.shape

(150,)

# print(iris['DESCR'])

X_train, X_test, y_train, y_test = model_selection.train_test_split(iris.data, iris.target, train_size=0.7)

/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)

classifier = linear_model.LogisticRegression()

classifier.fit(X_train, y_train)

/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.
"this warning.", FutureWarning)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='warn',
n_jobs=None, penalty='l2', random_state=None, solver='warn',
tol=0.0001, verbose=0, warm_start=False)

y_test_pred = classifier.predict(X_test)

print(metrics.classification_report(y_test, y_test_pred))

              precision    recall  f1-score   support

0       1.00      1.00      1.00        16
1       1.00      0.76      0.87        17
2       0.75      1.00      0.86        12

micro avg       0.91      0.91      0.91        45
macro avg       0.92      0.92      0.91        45
weighted avg       0.93      0.91      0.91        45

np.bincount(y_test)

array([16, 17, 12])

metrics.confusion_matrix(y_test, y_test_pred)

array([[16,  0,  0],
[ 0, 13,  4],
[ 0,  0, 12]])

classifier = tree.DecisionTreeClassifier()
classifier.fit(X_train, y_train)
y_test_pred = classifier.predict(X_test)
metrics.confusion_matrix(y_test, y_test_pred)

array([[16,  0,  0],
[ 0, 12,  5],
[ 0,  0, 12]])

classifier = neighbors.KNeighborsClassifier()
classifier.fit(X_train, y_train)
y_test_pred = classifier.predict(X_test)
metrics.confusion_matrix(y_test, y_test_pred)

array([[16,  0,  0],
[ 0, 15,  2],
[ 0,  0, 12]])

classifier = svm.SVC()
classifier.fit(X_train, y_train)
y_test_pred = classifier.predict(X_test)
metrics.confusion_matrix(y_test, y_test_pred)

/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)

array([[16,  0,  0],
[ 0, 15,  2],
[ 0,  0, 12]])

classifier = ensemble.RandomForestClassifier()
classifier.fit(X_train, y_train)
y_test_pred = classifier.predict(X_test)
metrics.confusion_matrix(y_test, y_test_pred)

/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)

array([[16,  0,  0],
[ 0, 16,  1],
[ 0,  0, 12]])

train_size_vec = np.linspace(0.1, 0.9, 30)

classifiers = [tree.DecisionTreeClassifier,
neighbors.KNeighborsClassifier,
svm.SVC,
ensemble.RandomForestClassifier
]

cm_diags = np.zeros((3, len(train_size_vec), len(classifiers)), dtype=float)

for n, train_size in enumerate(train_size_vec):
X_train, X_test, y_train, y_test = \
model_selection.train_test_split(iris.data, iris.target, train_size=train_size)

for m, Classifier in enumerate(classifiers):
classifier = Classifier()
classifier.fit(X_train, y_train)
y_test_pred = classifier.predict(X_test)
cm_diags[:, n, m] = metrics.confusion_matrix(y_test, y_test_pred).diagonal()
cm_diags[:, n, m] /= np.bincount(y_test)

/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/model_selection/_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified.
FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.
"avoid this warning.", FutureWarning)
/Users/rob/miniconda3/envs/py3.6/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)

fig, axes = plt.subplots(1, len(classifiers), figsize=(12, 3))

for m, Classifier in enumerate(classifiers):
axes[m].plot(train_size_vec, cm_diags[2, :, m], label=iris.target_names[2])
axes[m].plot(train_size_vec, cm_diags[1, :, m], label=iris.target_names[1])
axes[m].plot(train_size_vec, cm_diags[0, :, m], label=iris.target_names[0])
axes[m].set_title(type(Classifier()).__name__)
axes[m].set_ylim(0, 1.1)
axes[m].set_xlim(0.1, 0.9)
axes[m].set_ylabel("classification accuracy")
axes[m].set_xlabel("training size ratio")
axes[m].legend(loc=4)

fig.tight_layout()
fig.savefig("ch15-classification-comparison.pdf")


# Clustering

X, y = iris.data, iris.target

np.random.seed(123)

n_clusters = 3

c = cluster.KMeans(n_clusters=n_clusters)

c.fit(X)

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
n_clusters=3, n_init=10, n_jobs=None, precompute_distances='auto',
random_state=None, tol=0.0001, verbose=0)

y_pred = c.predict(X)

y_pred[::8]

array([1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0],
dtype=int32)

y[::8]

array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2])

idx_0, idx_1, idx_2 = (np.where(y_pred == n) for n in range(3))

y_pred[idx_0], y_pred[idx_1], y_pred[idx_2] = 2, 0, 1

y_pred[::8]

array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2],
dtype=int32)

metrics.confusion_matrix(y, y_pred)

array([[50,  0,  0],
[ 0, 48,  2],
[ 0, 14, 36]])

N = X.shape[1]

fig, axes = plt.subplots(N, N, figsize=(12, 12), sharex=True, sharey=True)

colors = ["coral", "blue", "green"]
markers = ["^", "v", "o"]
for m in range(N):
for n in range(N):
for p in range(n_clusters):
marker=markers[p], s=30,
color=colors[p], alpha=0.25)

for idx in np.where(y != y_pred):
axes[m, n].scatter(X[idx, m], X[idx, n],
marker="s", s=30,
edgecolor="red",
facecolor=(1,1,1,0))

axes[N-1, m].set_xlabel(iris.feature_names[m], fontsize=16)
axes[m, 0].set_ylabel(iris.feature_names[m], fontsize=16)
fig.tight_layout()
fig.savefig("ch15-clustering.pdf")


# Versions

%reload_ext version_information

%version_information sklearn, numpy, matplotlib, seaborn